

Reliability enhancement of phase change memory for neuromorphic applications

SangBum Kim, Ph.D. Research Staff Member Novel memory and cognitive applications IBM T.J. Watson Research Center

SangBum.Kim@us.ibm.com

40 years of Processor Performance

□ Moore's Law is ending : No more processor performance growth.

■ "More-than Moore" solution : Build a new processor which does a few tasks extremely well. → Which task should we choose to accelerate?

Recent Breakthroughs in Artificial Intelligence

Artificial Intelligence became so important and companies are developing *a dedicated* processors for artificial intelligence. HOW AT IS SHAKING UP THE CHIP MARKE'I

Google: TPU, Intel: Nervana Engine, Qualcomm, Apple

Wired Magazine, 2016

Processors dedicated for artificial intelligence

		_		_
	_			
			_	
	_		-	
	-			
		_		_

IBM

All the scalable learning algorithms demonstrated so far requires near-perfect devices to match the state-of-the-art clarification accuracy and power & area efficiency.

O How to improve synaptic device characteristics?

O Can we modify learning algorithms such that they can work with imperfect synaptic devices?

Phase change memory (PCM)

Memory states : Amorphous and poly-crystalline state

Program mechanism : Joule heating

Read mechanism : Resistance

Power efficient PCM cell for neuromorphic applications

IBM

PCM power consumption can be further optimized for neuromorphic applications.

PCM neuromorphic core

PCM neuromorphic core

S. Kim et al., IEDM 2015

Supanco	NVM PCM		
Зупарзе	Analog		
Neuron / chip	256		
Synapse / chip	64k		
Technology node	90nm		
Unit cell	2T-1R		
Neural network type	Spiking		
	On-chip		
Learning	Continuous		
	STDP mechanism		

- PCM 2T-1R synaptic operation
- On-chip spiking and learning neuron circuit
- Fully asynchronous and parallel operation

- O Invented 2T-1R synaptic unit cell to enable
 - massively parallel operation
 - asynchronous LIF and STDP operation

O Area-efficient

• [2T-1R / 5-10 bits] vs [SRAM: 6T / 1 bit]

Fully asynchronous and parallel operation

Fully asynchronous and parallel operation enabled by

- O Low programming power of PCM cell
- Separated path for LIF and STDP using 2T-1R unit cell

NVM's main role in neuromorphic processor

Heavily used computation in neural network

- Artificial neural network (Deep learning) : *matrix-vector multiplication*.
- O Spiking neural network : *multiply-and-accumulate*.

Resistor network can perform matrix-vector multiplication and multiply-and-accumulate computation much faster in a massively parallel fashion.

Conductances should be reliably stored in the resistive memory.

PCM reliability issues for neuromorphic applications

Resistance drift

O PCM cell conductance representing synaptic weight changes over time.

□ 1/f noise

O PCM cell is a dominant noise source in the memory cell.

PCM cell with metallic liner

Confined cell with metallic liner

O *Enables reliability enhancement* : Drift mitigation and noise reduction

O Cost effective integration

Electrical conduction path with metallic liner

The metallic liner provides an alternative conductive path to the amorphous region.

The effective metallic liner resistance is modulated by the amorphous region thickness.

Cost-effective integration scheme

- 1. Pore formation
 - 2. Metallic liner +
 - GST deposition
 - 3. Field GST removal
 - 4. GST cap + anneal
 - 5. GST cap removal
 - 6. Top electrode formation
 - S. Kim et al., IEDM, 2013

Void-free filling capability of ALD metallic liner and GST (Ge_xSb_yTe_z) *W. Kim et al., IEDM, 2016*

- Cost-effective integration scheme
 - O No additional mask
 - O Small cell size (Metallic liner 2-8nm)

ALD metallic liner and GST deposition ALD deposition tool : ULVAC EntronTM-EX W300

Finding the right metallic liner is the most important.

- Material property requirement for metallic liner
 - 1. Electrical resistivity (Semi-metallic)
 - 2. Low noise and drift (Thermal stability)
 - 3. Wetting capability with the phase change material (Low interface energy)
 - 4. Conformal deposition (ALD deposition)

Drift is successfully mitigated with the metallic liner.

O 0.06 vs 0.01: 6 *times smaller* resistance drift coefficient is achieved.

 \bigcirc 0.01 : 7% increase over 3 decades in time \rightarrow Almost negligible

□ Noise is successfully reduced with metallic liner.

O The PCM+ML(8nm) cell shows *4x smaller noise PSD* than PCM without ML.

O But the noise is still much higher than a discrete resistor.

Conclusion

- □ NVM neuromorphic chip with on-chip LIF and STDP
 - O Neuromorphic core for spike-based machine learning
 - O Non-volatile PCM as a synapse
 - O Brain-inspired : LIF, STDP, spiking neural network
 - O 64k (256-by-256) 2T-1R PCM synaptic cells
 - O Verified LIF and STDP operation at the array level

Resistance stabilizer for neuromorphic NVM

- O Resistance needs to be stabilized to reliably store synaptic weights
- O The confined PCM cell with metallic liner mitigates
 - Resistance drift
 - Noise

